Novel Aptamer-Nanoparticle Bioconjugates Enhances Delivery of Anticancer Drug to MUC1-Positive Cancer Cells In Vitro

نویسندگان

  • Chenchen Yu
  • Yan Hu
  • Jinhong Duan
  • Wei Yuan
  • Chen Wang
  • Haiyan Xu
  • Xian-Da Yang
چکیده

MUC1 protein is an attractive target for anticancer drug delivery owing to its overexpression in most adenocarcinomas. In this study, a reported MUC1 protein aptamer is exploited as the targeting agent of a nanoparticle-based drug delivery system. Paclitaxel (PTX) loaded poly (lactic-co-glycolic-acid) (PLGA) nanoparticles were formulated by an emulsion/evaporation method, and MUC1 aptamers (Apt) were conjugated to the particle surface through a DNA spacer. The aptamer conjugated nanoparticles (Apt-NPs) are about 225.3 nm in size with a stable in vitro drug release profile. Using MCF-7 breast cancer cell as a MUC1-overexpressing model, the MUC1 aptamer increased the uptake of nanoparticles into the target cells as measured by flow cytometry. Moreover, the PTX loaded Apt-NPs enhanced in vitro drug delivery and cytotoxicity to MUC1(+) cancer cells, as compared with non-targeted nanoparticles that lack the MUC1 aptamer (P<0.01). The behavior of this novel aptamer-nanoparticle bioconjugates suggests that MUC1 aptamers may have application potential in targeted drug delivery towards MUC1-overexpressing tumors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel MUC1 Aptamer Selectively Delivers Cytotoxic Agent to Cancer Cells In Vitro

Chemotherapy is a primary treatment for cancer, but its efficacy is often limited by the adverse effects of cytotoxic agents. Targeted drug delivery may reduce the non-specific toxicity of chemotherapy by selectively directing anticancer drugs to tumor cells. MUC1 protein is an attractive target for tumor-specific drug delivery owning to its overexpression in most adenocarcinomas. In this study...

متن کامل

Aptamer-guided DNA tetrahedron as a novel targeted drug delivery system for MUC1-expressing breast cancer cells in vitro

Mucin 1 (MUC1) is an important molecular target for cancer treatment because it is overexpressed in most adenocarcinomas. In this study, a new MUC1-targeted drug delivery system was assembled using an aptamer (Apt) that could recognize MUC1 and a DNA tetrahedron (Td) that could carry doxorubicin (Dox) within its DNA structure. The complex thus formed (Apt-Td) had an average size of 12.38 nm and...

متن کامل

Polyvalent mesoporous silica nanoparticle-aptamer bioconjugates target breast cancer cells.

Spatiotemporal control over the delivery of therapeutic agents is an outstanding challenge to cancer treatment. By taking advantage of recent advances in DNA aptamer biology and mesoporous silica nanotechnology, we report a general approach to design and fabricate controlled release drug delivery systems that are able to effectively target cancer cells. Specifically, polyvalent mesoporous silic...

متن کامل

Aptamer-hybrid nanoparticle bioconjugate efficiently delivers miRNA-29b to non-small-cell lung cancer cells and inhibits growth by downregulating essential oncoproteins

MicroRNAs (miRNAs) are potentially attractive candidates for cancer therapy. However, their therapeutic application is limited by lack of availability of an efficient delivery system to stably deliver these potent molecules intracellularly to cancer cells while avoiding healthy cells. We developed a novel aptamer-hybrid nanoparticle bioconjugate delivery system to selectively deliver miRNA-29b ...

متن کامل

Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells.

Nucleic acid ligands (aptamers) are potentially well suited for the therapeutic targeting of drug encapsulated controlled release polymer particles in a cell- or tissue-specific manner. We synthesized a bioconjugate composed of controlled release polymer nanoparticles and aptamers and examined its efficacy for targeted delivery to prostate cancer cells. Specifically, we synthesized poly(lactic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011